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A B S T R A C T   

(Aim) COVID-19 is an infectious disease spreading to the world this year. In this study, we plan to develop an 
artificial intelligence based tool to diagnose on chest CT images. 

(Method) On one hand, we extract features from a self-created convolutional neural network (CNN) to learn 
individual image-level representations. The proposed CNN employed several new techniques such as rank-based 
average pooling and multiple-way data augmentation. On the other hand, relation-aware representations were 
learnt from graph convolutional network (GCN). Deep feature fusion (DFF) was developed in this work to fuse 
individual image-level features and relation-aware features from both GCN and CNN, respectively. The best 
model was named as FGCNet. 

(Results) The experiment first chose the best model from eight proposed network models, and then compared 
it with 15 state-of-the-art approaches. 

(Conclusion) The proposed FGCNet model is effective and gives better performance than all 15 state-of-the- 
art methods. Thus, our proposed FGCNet model can assist radiologists to rapidly detect COVID-19 from chest CT 
images.   

1. Introduction 

COVID-19 (also known as coronavirus) was declared as a Public 
Health Emergency of International Concern on 30/01/2020, and 
declared as a worldwide pandemic on 11/03/2020 [1]. Till 16/Sep, this 
COVID-19 pandemic caused 29.6 million confirmed cases and 936.9 
thousand death tolls (US 199.1k deaths, Brazil 133.2k deaths, India 
82.0k deaths, Mexico 71.6k deaths, UK 41.6k deaths, etc.) 

Two prevail diagnosis are available. One is viral testing via a naso-
pharyngeal swab to test the presence of viral RNA fragments. The 
samples are then tested by the method of real-time reverse transcription 
polymerase chain reaction (rRT-PCR) [2]. In some situation, a nasal 

swab or sputum sample may also be used. Results of rRT-PCR are 
generally available within some hours to two days. Another is imaging 
methods, among which the chest computed tomography (CCT) is one of 
the imaging devices that can provide the highest sensitivity. The main 
biomarkers in CCT differentiating COVID-19 from healthy people are the 
asymmetric peripheral ground-glass opacities (GGOs) without pleural 
effusions. The advantages of imaging methods are that they could aid in 
screening or accelerate the speed of diagnosis, especially with shortages 
of RT-PCR [3]. 

However, manual interpretation by radiologists is tedious and easy 
to be influenced by inter-expert and intra-expert factors (such as fatigue, 
emotion, etc.). Besides, the diagnosis throughput by human experts are 
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not comparable with machines. Particularly, early symptoms are 
smaller, which may be neglected by human experts. Smart diagnosis 
systems via computer vision and artificial intelligence can benefit pa-
tients, radiologists, experts and hospitals. 

Traditional artificial intelligence (AI) and modern deep learning 
(DL) methods have achieved excellent results in analyzing medical im-
ages, e.g., Lu [4] proposed a radial-basis-function neural network 
(RBFNN) to detect pathological brains. Yang [5] presented a 
kernel-based extreme learning classifier (KELM) to create a novel 
pathological brain detection system. Their methods were robust and 
effective. Lu [6] proposed a novel extreme learning machine trained by 
the bat algorithm (ELM-BA) approach. Li and Liu [7] employed a 
real-coded biogeography-based optimization (RCBBO) for pathological 
brain detection, and this RCBBO method can be transferred to COVID-19 
detection. Jiang [8] proposed a six-layer convolutional neural network 
with leaky rectified linear unit for fingerspelling recognition. Their 
method was shorted as 6L-CLF. Szegedy, et al. [9] presented the Goo-
gleNet. Guo and Du [10] suggested the use of ResNet-18 for thyroid 
ultrasound classification. Fulton, et al. [11] employed ResNet-50 for 
classification of Alzheimer’s disease. Their method is called RN-50-AD. 
Togacar, et al. [12] used SqueezeNet and MobileNetV2 to extract fea-
tures, and employed social mimic optimization (SMO) for feature se-
lection and combination. Cohen, et al. [13] used a large non-COVID-19 
chest X-ray set to construct features for COVID-19 images. They authors 
predicted geographic extent score and lung opacity score to gauge 
severity of COVID-19 infection. Their method was abbreviated as Covid 
severity score net (CSSNet) in short. Loey, et al. [14] used generative 
adversarial network (GAN) to generate more images, and they found 
GoogleNet with GAN works better for two-class classification. They 
method was called GGNet. Li, et al. [15] used ResNet50 as the backbone. 
The CNN features were combined by a max-pooling operation. The 
resulting feature map was fed to a fully-connected layer to generate the 
probability score of COVID-19, community acquired pneumonia (CAP), 
and non-pneumonia. Their method was called COVNet. Ni, et al. [16] 
used 3D U-Net and MVP-Net on 96 COVID-19 patients in CCT images, for 
pulmonary lobe segmentation, COVID-19 lesion detection and 
COVID-19 lesion segmentation. Their method is called NiNet in this 
study. Ko, et al. [17] proposed a simple 2D deep learning framework for 
single CCT image. The authors compared four pretrained models: 
VGG16, ResNet-50, Inception-V3, and Xception. They found ResNet-50 
showed the best performance. The authors used two augmentation 
method: image rotation and zoom. Their proposed additional layers 
consist of a flatten layer, a fully connected layer with 32 neurons, and a 
fully connected layer with 3 neurons. Their model can classify three 
classes: non-pneumonia, other pneumonia, and COVID-19. Their 
method was named as fast-track COVID-19 classification network 
(FCONet). Wang, et al. [18] developed a weakly-supervised deep 
learning framework using 3D CT volumes for COVID-19 classification 
and lesion localization. In their method, the lung region was segmented 
via a pre-trained UNet. The segmented 3D lung region was fed into a 3D 
deep neural network to predict the COVID-19 infection probability. 
Their method was named 3D deep convolutional neural network to 
detect COVID-19 (DeCovNet). Tabik, et al. [19] proposed a 
COVID-SDNet for predicting COVID-19 based on chest X-ray images. 

However, most of the existing COVID-19 algorithms above employed 
single feature representation (SFR), and ignore fusing multiple feature 
representations (MFRs). Commonly, MFRs can yield better results than 
using SFR, because MFR is more informative and accurate than any SFR, 
and MFR consists of all the necessary information. The disadvantages of 
MFR are (i) they are of high-dimensionality and needs fusion technol-
ogy, but fuse sometimes will introduce the distortion into the fused 
features; (ii) Fusion is not a static process in nature; (iii) Fusion of trivial 
features may affect the results. For example, Hasan, et al. [20] fused 
MFRs in robust hemolytic peptide prediction. Their cross-validation 
results showed their method outperformed state-of-the-art approaches. 
Li, et al. [21] used kernel sparse MFRs for hyperspectral (HS) image 

classification. Their method gave better results than state-of-the-art HS 
image classification methods. There are more success cases of using 
MFRs yielding better performances than SFR. 

The main contribution of this paper is deep feature fusion (DFF), 
viz., the fuse of multiple deep feature representations from both con-
volutional neural network (CNN) and graph convolutional network 
(GCN). CNN yields individual image-level representation (IIR), while 
GCN yields relation-aware representation (RAR). Hence, IIR and RAR 
are fused together at feature-level, and experiments proved the DFF 
proposed is efficient, and the fused features give better performances 
than using IIR features alone. Particularly, our method addresses related 
subproblems, e.g., feature selection, feature fusion, classifier selection. 
The resulting system is an efficient pipeline for COVID-19 diagnosis. We 
propose a fully automatic method which aims to ease the burden of the 
radiologist. Other contributions of this study are: (i) we propose to use 
batch normalization and dropout to our deep neural network model; (ii) 
we use rank-based average pooling to replace traditional max pooling; 
(iii) we propose multiple-way data augmentation. Finally, our model 
was demonstrated to give better performance than state-of-the-art 
approaches. 

2. Dataset and preprocessing 

Tables 12 and 13 itemized the abbreviation and mathematical 
symbols used in this study for easy reading. See Appendix A and 
Appendix B. 

2.1. Dataset 

Image acquisition CT configuration and method: Philips Ingenuity 64 
row spiral CT machine, KV: 120, MAS: 240, layer thickness 3 mm, layer 
spacing 3 mm, screw pitch 1.5: lung window (W: 1500 HU, L: − 500 HU), 
Mediastinum window (W: 350 HU, L: 60 HU), thin layer reconstruction 
according to the lesion display, layer thickness and layer distance are 1 
mm lung window image. The patients were placed in a supine position, 
breathing deeply after holding in, and conventionally scanned from the 
lung tip to the costal diaphragm angle. 

For each subject, 1–4 slices were chosen by radiologists using slice 
level selection method, because usually 4 slices are sufficient to cover 
the lesion. For COVID-19 pneumonia patients, the slice showing the 
largest size and number of lesions was selected. For normal subjects, any 
level of the image can be selected. 

The resolutions of all selected images are 1, 024 × 1, 024 × 3. Table 1 
lists the demographics of subjects, where we have two categories: (i) 
COVID-19 patient, and (ii) healthy control (HC) subjects. 

When there are differences between the analyses of two junior 
radiologist (A1, A2), a superior doctor (A3) was consulted to reach a 
consensus. Suppose X means a CCT scan, L means the labeling of each 
individual expert, and the final labeling L̂is obtained by 

L̂(X) =
{

L(A1) L(A1) = L(A2)

MV(Lall) otherwise (1)  

where Lall represents the labeling of all three experts, i.e., Lall = [L(A1),

L(A2),L(A3)] MV denotes majority voting. 

2.2. Preprocessing 

The original dataset containing 320 COVID-19 images and 320 HC 

Table 1 
Demographics of subjects used in this study.   

Subject nos Image nos. Age range 

COVID-19 142 320 22–91 
HC 142 320 21–76  
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images. The dataset is symbolized as U1, each image is symbolized as 
u1(i) ∈ U1,i = 1,2,⋯,|U| = 640. We have U1 = [u1(1),u1(2),…,u1(i),…,

u1(|U|)]. The size of each image is size[u1(i)] = W1 × H1 × C1. Here W1 =

H1 = 1024, C1 = 3. 
The raw images are not suitable to train the deep neural networks, 

because (i) they have redundant information in three color channels; (ii) 
their contrast are incoherent; (iii) they contained background, checkup 
bed, and text information; and (iv) their sizes are too large. Fig. 1 shows 
the pipeline of preprocessing of our COVID-19 dataset. 

First, we converted the color images to grayscale by only reserving 
the luminance information, and thus got the grayscale image set U2 as 

U2 = G(U1)

= {u2(1), u2(2),…, u2(i),…u2(|U|)}
(2)  

where means the grayscale operation. Now size[u2(i)] = W2 × H2 × C2. 
Here W2 = H2 = 1024, C2 = 1. 

Second, histogram stretching (HS) method was used to increase 
every image’s contrast. For ith image u2(i), i = 1, 2, ⋯, |U|, we first 
calculate their minimum grayscale value μmin(i) and maximum grayscale 
value μmax(i) respectively by 

μmin(i) = minW1
x=1minH1

y=1u2(i|x, y) (3.a)  

μmax(i) = maxW1
x=1maxH1

y=1u2(i|x, y) (3.b)  

here (x, y) means coordinates of pixel of the image u2(i). The new his-
togram stretched image u3(i) is obtained by 

u3(i) =
u2(i) − μmin(i)

μmax(i) − μmin(i)
(4) 

In all, we get the histogram stretched image set U3 = HS(V2) =

{u3(1),u3(2),⋯,u3(i),…u3(|U|)}. 
Third, we crop the images to remove the texts at the margin areas, 

and the checkup bed at the bottom area. Thus, we get the cropped 
dataset U4 as 

U4 = C(U3, [vt, vb, vl, vr ])

= {u4(1), u4(2),⋯, u4(i),⋯, u4(|U|)}
(5)  

where C represents crop operation. Parameter (vt, vb, vl, vr) means the 
crop values in unit of pixel from top, bottom, left, and right. We set vt =

vb = vl = vr = 150. Now the size of each image size[u4(i)] = W4 × H4 ×

C4. We can have W4 = H4 = 724, and C4 = C2 = 1. 
Fourth, we downsampled each image to size of [W5, H5], and we now 

get the resized image set U5 as 

U5 = ⇓(U4, [W5,H5])

= {u5(1), u5(2),…, u5(i),…u5(|U|)}
(6)  

where ⇓: x↦→y means the downsampling (DS) function, where y is a 
downsampled image of original image x. In this study, W5 = H5 = 256, 
C5 = 1. The advantage of DS are two parts: (i) It can save storage, as 
shown in Table 2. (ii) Smaller-size dataset can help the following clas-
sification system from overfitting. The reason why we set W5 = H5 =

256is based on trial-and-error method. We found that larger size will 
bring in overfitting which impairs the performance, and meanwhile, 
smaller size will make the images blurry which also decreases the clas-
sifier’s performances. 

Table 2 compares the size and storage of each image us(i),s = 1,⋯,5,
i = 1, ⋯, |U|at every preprocessing step. We can see here after pre-
processing procedure, each image will only cost about 2.08% of its 
original storage or size. The compression ratio (CR) rates of ith image of 
final state U5 to original stage U1 were calculated as. CRStorage(i) =

byte[u5(i)]/byte[u1(i)] = 262, 144/12, 582, 912, and CRsize(i) =

size[u5(i)]/size[u1(i)] = 65, 536/3, 145, 728. Hence, we can get 
CRsize(i) = CRsize(i) = 2.083%, ∀i = 1,2,…, |U|. Fig. 2(a and b) shows 

two samples (COVID of a and HC of b) from the preprocessed dataset U5. 
Fig. 2(c) delineates the lesions of (a) within red circles. 

3. Methodology 

The motivation of this study is two-fold. First, we plan to create a 
customary state-of-the-art comparable convolutional neural network 
with several improvements, including batch normalization, dropout, 
rank-based average pooling, and multiple-way data augmentation. This 
motivation of using CNN is to extract individual image-level represen-
tation (IIR). 

Nevertheless, CNN cancels out the relation of a particular image 
among a group of images. In contrast, this relation-aware representation 
(RAR) can be captured by graph convolutional network (GCN). Hence, 
the second main motivation is (i) to use GCN to establish connectivity 
analysis and extract RAR features; and (ii) to fuse CNN features and GCN 
features together to enhance the classifier’s performance. 

Using GCN with CNN can obtain better performance than using CNN 
merely. Shi, et al. [22] used GCN for cervical cell classification. Their 
results were significantly better than ResNet-101 and DenseNet-121. 
Bin, et al. [23] used GCN to extract structure-aware human pose esti-
mation. Their experiments on single- and multi-person estimation 
benchmark datasets showed that GCN consistently outperforms 
competing state-of-the-art methods. Tian, et al. [24] proposed a novel 
GCN-based interactive prostate segmentation in MR images. Their 
method yielded mean Dice similarity coefficients of 93.8 ± 1.2% and 
94.4 ± 1.0% on their in-house and PROMISE12 datasets, respectively. 
All those three literatures show the powerfulness of GCN. 

3.1. Basics of CNN 

Traditional machine learning achieved excellent results on disease 
detections [25,26]. Convolutional neural network (CNN) is a new arti-
ficial neural network. Generally, CNN is composed of conv layers (CLs), 

Fig. 1. Illustration of preprocessing.  

Table 2 
Image size and storage per image at each preprocessing step.  

Preprocess Symbol W H C Size (per 
image) 

Storage (per 
image) 

Original u1(i) 1024 1024 3 3, 145, 728 12,582,912 
Grayscale u2(i) 1024 1024 1 1, 048, 576 4194,304 
HS u3(i) 1024 1024 1 1, 048, 576 4194,304 
Crop u4(i) 724 724 1 524, 176 2096,704 
DS u5(i) 256 256 1 65, 536 262,144  
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pooling layers (PLs), non-linear activation functions (NLAFs) and fully 
connected layers (FCLs) [27,28]. 

The essential operation in CNN is convolution. A complete CL per-
forms 2D convolution along the width and height directions [29]. Note 
that the weights in CNN are initialized randomly, and then weights are 
learnt from the data itself by network training. Fig. 3 illustrates the 
pipeline of input feature maps passing across a complete CL. 

Fig. 3 shows there are three steps during a complete conv layer: (i) 
Kernel-based convolution; (ii) Stack; (iii) NLAF. Assume there is an input 
matrix Γ, kernels Qj, ∀j ∈ [1, ⋅⋅⋅, J], and an output T, (here output T 
means output of the whole three-step complete conv layer, not the 
output of merely convolution operation). Note a conv layer means the 
layer runs convolution, and the “complete conv layer” means the com-
bination of the conv layer; the stack, and NLAF. In Fig. 3, we used the 
same color to denote the input and output, because the output is the 
input of next conv layer. 

For each kernel Qj, the convolution output is 

Step1 : f (j) = Γ ⊗ Qj, ∀j ∈ [1,⋯, J] (7)  

where ⊗ means convolution operation. Then, all f(j) matrixes are 
stacked into a three-dimensional matrix F. 

Step2 : F = [f (1),⋯, f (J)] (8)  

where means the stack operation. Finally, the matrix F is passed into the 
NLAF and output the final matrix [30] 

Step3 : T = NLAF(F) (9) 

We can calculate theirs sizes S of three main components (input, 
kernel, and output) as 

S(x) =

⎧
⎨

⎩

WΓ × HΓ × CΓ x = Γ
WQ × HQ × CQ x = Qj,∀j ∈ [1,⋯, J]
WT × HT × CT x = T

(10)  

Where the triple elements (W, H, C) represent the size of height, width, 
and channels of the matrix, respectively [31]. The subscript Γ, Q, and T 
represent input, kernel, and output, respectively. J denotes total number 
of filters. Note that CΓ = CQ, which means the channel of input CΓshould 
equal the channel of kernel CQ. 

Assume those filters move with padding of vp and stride of vs, we can 
get the sizes (WT × HT × CT) of output matrix T by simple math as [32]: 

Fig. 3. Illustration of a complete conv layer.  

Fig. 2. Two samples of preprocessed dataset U5.  
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⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

WT = 1 +

(
2 × vp + WΓ − WQ

)

vs

HT = 1 +

(
2 × vp + HΓ − HQ

)

vs

CT = J

(11)  

where ⌊ ⋅ ⌋ represents the floor function. The channel of output CT should 
equal the number of filters J. 

For the last step, viz., the NLAF β, it usually selects the rectified linear 
unit (ReLU) function [33]. Suppose fij is the entry of the matrix F, we 
have 

βReLU
(
fij
)

= ReLU
(
fij
)

= max
(
0, fij

) (12) 

ReLU is preferred to traditional NLAFs such as sigmoid (SM) function 
and hyperbolic tangent (HT) as below: 

βSM
(
fij
)
=
(
1 + e− fij

)− 1 (13)  

βHT
(
fij
)

= tanh
(
fij
)

=
(efij − e− fij

)

(efij + e− fij
)

(14)  

3.2. Improvement 1: batch normalization and dropout 

The motivation of batch normalization (BAN) is to solve the “internal 
covariant shift (ICS)”, which means the effect of randomness of the 
distribution of inputs to internal CNN layers during training. The exis-
tence of ICS will worsen the CNN’s performance [34,35]. 

This study introduced BAN to normalize those internal layer’s inputs 

Γ = {γi}over every mini-batch (suppose its size is |Γ|), in order to 
guarantee the batch normalized output T = {ti}have a uniform distri-
bution. Mathematically, BAN is to learn a function from 

{γi, i = 1, 2.⋯, |Γ|}
⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟

Γ

↦→{ti, i = 1, 2,⋯, |Γ|}
⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟

T

(15) 

During training, the empirical mean μe and empirical variance ϕe can 
be calculated as 
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

μe =
1
|Γ|

(
∑|Γ|

i=1
γi

)

ϕe =
1
|Γ|
∑|Γ|

i=1
(γi − μe)

2

(16) 

The input γi ∈ Γ was first normalized to γi
‘

γi
‘
=

γi − μe̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(ϕe + αs)

√ (17)  

where αs in denominator in Eq. (17) is stability factor, used to enhance 

the numerical stability. Now the γi
‘ have zero-mean and unit-variance 

characteristics. In order to have a more expressive deep neural network 
[36] (here expressive means the network’s expressive power, i.e., the 
ability to express functions), a transformation is usually carried out as 

ti = A1 × γi
‘
+A2, i = 1, 2,⋯, |Γ| (18)  

where the parameters A1 and A2 are two learnable parameters during 
training. The transformed output ti ∈ T is then passed to the next layer 

and the normalized γi
‘ remains internal to the current layer. 

In the inference stage, we no longer have minibatch. So instead of 

Fig. 4. A simplistic example of a 4-layer DON.  
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calculating μe and ϕe, we will calculate population mean μp and popu-
lation variance ϕp, and we have the output t̂iat the inference stage as 

t̂i = A1 ×
γi − μp
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
ϕp + Δ

)√ + A2 (19) 

On the other hand, a dropout layer will be introduced before the 
fully-connected layer. It is a regularization technique which means 
randomly dropping out neurons during the training. Dropout can help 
avoid overfitting of deep neural networks. Srivastava, et al. [37] pro-
posed the concept of dropout neurons (DN) by randomly drop neurons 
and set to zero their neighboring weights from the CNN during training. 
Suppose collection of all fully-connected neurons is {}, the collection of 
dropped neurons is {}, the collection of reserved neuron is { − }. The 
selections of DN are random with a retention probability (αrp) defined as: 

αrp =
|D − N|

N
(20) 

Suppose we have a neuron N(i, j) and its corresponding original 
weights are w(i, j). During training, the neuron’s weights wT(i, j) will 
update as: 

wT(i, j) =
{

w(i, j) N(i, j) ∈ D
0 N(i, j) ∕∈ D (21) 

During inference, we run the entire CNN without dropout, but the 
weights of FCLs wI(i, j) using DNs are downscaled (viz., multiplied) by 
αrp. 

wI(i, j) = αrp × w(i, j) (22) 

The compression ratio of learnable weights (CRLW), is the squared 
value of retention probability αrp. 

CRLW = CD
/

C = α2
rp (23)  

Where CD is the total number of learnable weights after dropout, and C is 
the total number of learnable weights before dropout. Fig. 4 shows a 
simplistic example, and the detailed analysis is in Appendix C. 

3.3. Improvement 2: rank-based average pooling 

The pooling function fundamentally replaces the output of a layer 
(particularly conv layers) with a summary statistic of the adjacent out-
puts at a particular position. The pooling method is capable of making 
less-sensitive activations in the pooled map than the original feature 

map to the accurate spots of structures within the image. 
For a region to be pooled Ψ with size of n × n, here n means pooling 

size. Suppose the pixels within the region Ψ = {ψ i,j}, (1 ≤ i, j ≤ n)are 

Ψ =

⎡

⎣
ψ1,1 ⋯ ψ1,n
⋯ ⋯ ⋯

ψn,1 ⋯ ψn,n

⎤

⎦ (24) 

The l2 norm pooling (L2P) calculates the l2 norm of the given region 
Ψ. Assume the output pooling matrix is P, the L2P output PL2P(Ψ) is 
defined as PL2P(Ψ) = sqrt(

∑n
i,j=1ψ2

ij). In this study, we add a constant 1/ 
|Ψ|, where |Ψ| means the number of elements of region Ψ. We have 
|Ψ| = n2. We added the new constant 1/|Ψ| under the square root, and 
the constant 1/|Ψ| does not influence training and inference. 

PL2P(Ψ) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑n
i,j=1ψ2

ij

|Ψ|

√

(25) 

The average pooling (AP) calculates the mean value in the region Ψ 
as 

PAP(Ψ) = average(Ψ)

=

∑n

i,j=1
ψi,j

|Ψ|

(26) 

The max pooling (MP) operates on the region Ψ and selects the max 
value. 

PMP(Ψ) = max(Ψ)

= maxn
i,j=1ψi,j

(27) 

Shi, et al. [38] proposed three different rank-based pooling ap-
proaches. Their advantages compared to ordinary pooling methods are: 
(i) Ranking list is invariant under slight changes of activation values; (ii) 
Important activation values can be easily distinguished by their cognate 
ranks; and (iii) Usage of rank can avoid scale problems arise from 
value-based pooling methods. Among rank-based pooling approaches, 
the rank-based average pooling (RAP) gives better performances than 
state-of-the-art tactics, and has been applied in many fields. For 
example, Jiang [39] added RAP to convolutional neural networks for the 
susceptibility-weighted imaging based cerebral microbleed detection. 
They got a high accuracy of 97.18%. Sun, et al. [40] added RAP between 
each subspace mapping layer for facial expression recognition. Their 
method is better than PCANet and LDANet approaches. Akhtar and 
Ragavendran [41] compared rank-based pooling with traditional pool-
ing methods, and stated the advantages of rank-based pooling are they 

Fig. 5. A simplistic example of four pooling technologies (L2P, AP, MP, and RAP).  
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can assign ranks and weights to activations simultaneously. 
RAP first calculate the rank matrix (RM) based on the values of each 

element ψ l ∈ Ψ, usually lower ranks rl ∈ [1, 2, ⋅⋅⋅, n2] are assigned to 
higher values (ψ l) as 

ψl1〈ψl2⇒rl1〉rl2 (28) 

Providing tied values (ψ l1 = ψ l2), a constraint is added to Eq. (28). 

(ψl1 =ψl2) ∧ (l1> l2)⇒rl1 > rl2 (29) 

RAP output of input Ψ is PRAP(Ψ), which used the ag greatest 
activations 

PRAP(Ψ) =
1
ag

∑

l

(
ψl|1 ≤rl ≤ ag

)
(30)  

ag is the rank threshold. If ag = 1, then RAP will degrade to MP. On the 
other side, if ag = n2, then RAP will degrade to AP. Therefore, RAP is 
regarded as a trade-off between average pooling and max pooling. Note 
that L2P, AP, MP, and RAP work on every slice separately. Fig. 5shows a 
simplistic example of four pooling techniques and the explanation is 
shown in Appendix D. 

3.4. Improvement 3: multiple-way data augmentation 

To circumvent the small-size dataset (SSD) and lack of generation 
(LG) problems, there are four possible types of solutions, e.g., data 
augmentation (DA), data generation (DG), ensemble approaches (EA), 
and regularization. 

DA will generate fake images by perturbing existing data, such as 
cropping, rotation. DG create data from a sampled data source. Synthetic 
minority over-sampling technique (SMOTE) [42] is a typical algorithm 
of DG. EA methods use multiple models to obtain better predictive 
performance than any model alone [43]. Regularization is mainly for the 
weights of models. Large weights will make the models unstable, 
because minor variation on the inputs will yield large differences in the 
output for large weights. Smaller weights are regarded to be more reg-
ular (i.e., less specialized). Hence, this type of technique is called weight 
regularization. DA is used due to its simple and ease to realize. 

We proposed a ηDA-way multiple-way data augmentation (MDA) 
technology. The difference of our MDA to traditional DA is we use 
multiple (ηDA > 10) DA techniques. Assume the preprocessed dataset U5 
= [u5(1),⋯,u5(|U|)]. The dataset U5is divided into three sets: 

U5 ⇒
split

{Xt,Xv, Y} (31)  

where training set Xt = [xt(1),⋯xt(i),⋯, xt(|Xt |)], validation set Xv =

[xv(1),⋯,xv(|Xv|)], and test set Y = [y(1),⋯, y(|Y|)]. Meanwhile, the sum 
of sizes of training set, validation set, and test set equals to the size of 
preprocessed dataset, |Xt | + |Xv| + |Y| = |U5|. 

From the whole training image set Xt, we first performed the 
following seven DA techniques with different MDA factors χ. Note that 
each MDA technique will generate ηn new images. Suppose the output 
MDA training set is symbolized as XtD = {xtD(i)}.  

(i) Rotation. Rotation angle vector χR skip the value of 0. 

xt1(i)
̅̅→

= R[xt(i)]

=

[
xt1

1

(
i, χR

1

)
,…bR

ηn

(
i, χR

ηn

)] (32)   

where R means rotation operation.  

(ii) Noise injection. The χN
m-mean χN

v -variance Gaussian noises 

p(z) =
1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2π × χN

v

√ exp

[

−

(
z − χN

m

)2

2 × χN
v

]

(33)   

were added to all training images to produce ηn new noised images, 
where z is the gray levels, and p is the probability density function. We 
have 

xt2(i)
̅̅→

= N[xt(i)]

=

[
xt2

1 (i),…xt2
ηn
(i)
] (34)  

where N means the noise injection operation. We used Gaussian noise in 
this study because it is the most common type found in images compared 
to impulse noise, speckle noise, and salt and pepper noise.  

(iii) Horizontal Shear (HS) transform. New V images were generated 
by HT transform 

xt3(i)
̅̅→

= H[xt(i)]

=

[
xt3

1

(
i, χH

1

)
,…xt3

ηn

(
i, χH

ηn

)] (35)   

where H means HS transform. HS factors χH skip the value of χH = 0. 
Mathematically, if original coordinates are (u, v), and HS transformed 
coordinates are (u1, v1), then we have 
{

u1 = u + χH × v
v1 = v (36) 

Clearly, the HS transform is a special affine transform, which can be 
written as 

[u1, v1, 1] = [u, v, 1]*

⎡

⎣
1 0 0

χH 1 0
0 0 1

⎤

⎦ (37)    

(iv) Vertical Shear (VS) transform. 

xt4(i)
̅̅→

= V[xt(i)]

=

[
xt4

1

(
i, χV

1

)
,…xt4

ηn

(
i, χV

ηn

)] (38)   

where V means VS transform, which ran similarly as ST transform. 
Particularly, the VS factor is the same as HS factor χV

j = χH
j ,∀j ∈ 1,2,⋯,

ηn.  

(v) Random translation (RT). All training images xt(i) were translated 
ηn times with random horizontal shift εx and random vertical shift 
εy, both values of which are in the range of [ − aZ,aZ], and obey 
uniform distribution. 

εθ
m ∼ [− aZ , aZ ],∀m ∈ [1, ηn] ∧ ∀θ ∈ {x, y} (39)   

where aZ is the maximum shift factor. So, we have 

xt5(i)
̅̅→

= RT[xt(i)]

=

[
xt5

1

(
i, εx

1, εy
1
)
,…xt5

ηn

(
i, εx

ηn
, εy

ηn

)] (40)   
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(vi) Gamma correction (GC). The factor of GC χG will skip the value of 
1. 

xt6(i)
̅̅→

= G[xt(i)]

=

[
xt6

1

(
i, χG

1

)
,…xt6

ηn

(
i, χG

ηn

)] (41)   

where G means GC operation.  

(vii) Scaling. All training images {xt(i)} were scaled with scaling factor 
χS, skipping χS = 1. 

xt7(i)
̅̅→

= S[xt(i)]

=

[
xt7

1

(
i, χS

1

)
,…xt7

ηn

(
i, χS

ηn

)] (42)    

(viii) Mirror and concatenation. All the above results are mirrored, we 
have 

xn+ηDA
2 (i)

̅̅̅̅̅→
= S
[
xn(i)
̅̅→]

,∀n ∈
{

1, 2,⋯,
ηDA

2

}
(43)   

where represents the mirror function. All the ηDA-way results are finally 
concatenated as 

xtD(i)
̅̅̅→

⏟̅̅⏞⏞̅̅⏟
ηEF

=

⎧
⎨

⎩
x(i)
⏟⏞⏞⏟

1

, x1(i)
̅̅→

⏟̅⏞⏞̅⏟
ηn

,⋯, xηDA (i)
̅̅̅→

⏟̅̅̅⏞⏞̅̅̅⏟
ηn

⎫
⎬

⎭
(44)  

where means concatenation, ηEF the enhance factor, meaning the ratio of 
enhanced training set to the original training set. ηEF is defined as 

ηEF =

⃒
⃒
⃒xtD(i)
̅̅̅→⃒⃒

⃒

|xt(i)|
(45) 

We can calculate ηEF = ηn × ηDA + 1. Thus, the MDA can be regarded 
as a function, making the enhanced training set ηEFtimes as large as raw 
training set Xt. 

{xt(i) ∈ Xt} ↦→
MDA
{

xtD(i)
̅̅̅→

∈ XtD
}

(46)  

3.5. Improvement 4: deep feature fusion by graph convolutional network 

To further improve the performance, we introduced a deep feature 
fusion (DFF) method based on graph convolutional network (GCN). GCN 
helps find the relation-aware representation (RAR) [44], and thus fuse 
RAR from GCN with IIR from CNN. 

For a given graph G = (V,E), where we have |V| nodes vi ∈ V, i = 1,
⋯, |V|and corresponding links (vi, vj) ∈ E. We can define an adjacency 
matrix A ∈ |V| × |V| which embeds the relationship of all nodes. The 
purpose of GCN is to encode the graph G via a neural network model f(X, 
A) where X ∈ |V| × D, where D means the feature dimension of each node 
[45]. Note that AX means the sum of all neighboring node features. So 
GCN can capture the RAR information [46]. 

A multi-layer GCN will update the node features based on following 
layer-wise rule: 

Hl+1 = fReLU

(
ÂHlWl

)
(47)  

where Â ∈ |V|×|V|represents the normalized version of adjacency matrix 
A. fReLU is ReLU function. The variable H(l) ∈ |V|×dl is the feature repre-
sentation at Lth layer [47]. 

To carry out the normalization A↦→Â, we first calculate the degree 

matrix δ ∈ |V| × |V|which is a diagonal matrix 

δijdef
{

deg(vi) if i = j
0 otherwise (48) 

The normalized Âis obtained based on original adjacency matrix A 
and degree matrix δ [48]. 

Note the input X = H(0), so for a two-layer GCN as shown in Fig. 6, 
we have 

H(1) = fReLU

(
ÂXW(0)

)
(49.a)  

H(2) = fReLU

(
ÂH1W(1)

)
(49.b)  

where W(0) ∈ d0×d1 , and W(1) ∈ d1×d2 are two trainable weight matrixes. 
(d0, d1, d2) are hyperparameters will be set in the experiment. 

In our COVID-19 classification task, the GCN will be fused with 
previous CNN models N(1) − N(4). The last FCL in previous CNN models 
is used as the individual image-level representation (IIR) 
I ∈ d0 Afterwards, k-means clustering (KMC) is performed on those 
image-level representation features, and we can get |V| cluster centroids 
X ∈ |V|×d0 . The clustering correlation shows the potential relationships of 
images. The adjacency matrix A ∈ |V| × |V|is defined as 

Fig. 6. Illustration of a two-layer GCN. (Different color cylinders mean 
different cluster centroids). 

Fig. 7. Illustration of KNN-based adjacency matrix.  
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Amn =

{
1 if Xm ∈ Δ(Xn) ∨ Xn ∈ Δ(Xm)

0 otherwise (50)  

where ∨ means operation “or”, Δ means the k-nearest neighbors (kNN) 
based on cosine similarity. The number of neighbors in kNN is sym-
bolized as . 

Fig. 7 shows an example, the three nearest neighbors of node i and 
node j are Δ(Xi) = (1, 2, j), Δ(Xj) = (3, 4, 5). So, we have Xj ∈ Δ(Xi), 
Xi∕∈Δ(Xj). Using the ‘or’ operation we can conclude Aij = 1. The node 
features Xand adjacency matrix A are sent into two-layer GCN, and we 
can get H(2) ∈ |V|×d2 . The fusion between H(2)and I is accomplished by dot 
product fusion. Note we need to set d0 = d2, 

y = H(2)I (51) 

A linear projection (LP) with learnable weight W(2) ∈ |V| × C, where C 
means the number of categories, we have 

z = yW(2) + b (52)  

where z ∈ C, and b represents the bias. C = 2in this study because our 
task is a binary classification problem, i.e., COVID-19 and healthy 
people. Finally, softmax operation were performed on z, and cross en-
tropy (CE) loss were calculated. Algorithm 1 shows the proposed deep 
feature fusion algorithm. During inference stage, the CNN’s IIR features 
are gained and its corresponding GCN’s RAR features are obtained by 
pre-constructed graph and trained two-layer GCN. Using both CNN and 
GCN, each image is represented by the fusion of its individual image- 
level representations and its relation-aware representations [22]. 
Fig. 8 shows the fusion flowchart. 

3.6. Summary of proposed eight networks 

In total, we proposed eight new networks [N(1), ⋅⋅⋅, N(8)]: (i) We first 
designed a base network N(1), N(1) is called the base network (BN). (ii) 

we added batch normalization (BAN) and dropout (DO) techniques, and 
obtained the improved network, N(2) named as “BDBN”. (iii) Next, we 
developed N(3) termed BDRBN, by introducing rank-based average 
pooling (RAP) to replace traditional max pooling (MP) in N(2). (iv) 
Multiple data augmentation (MDA) was proposed and added to N(3), so 
we get new network N(4), which is short named as BDRMBN. 

For the rest four networks, we add a new deep feature fusion (DFF) 
approach that combines the features from above networks [N(1), N(2), N 
(3), N(4)] to RAR features from 2-layer GCN. The short names of [N(5), 
N(6), N(7), N(8)] are defined as DBN, DBDBN, DBDRBN, DBDRMBN. 
Table 3 gives all the eight proposed network relationships. 

As our expectation, the best model should be within N(5 − 8)since 
they fuse the features from CNNs N(1 − 4)with GCN. The best model 
will have a formal name as FGCNet, which means Fusion of GCN and 
CNN networks. 

The configuration of proposed networks was designed by trial-and- 
error method. We set the number of conv layers as uc. Similarly, the 
number of FCL layers is symbolized as uf. The details of the base network 
can be found in Table 6. 

3.7. Measures 

The algorithm will run W runs, which help to reduce the randomness. 
At each run w = 1,2,⋯,W, the ideal Eiand real Er confusion matrix over 
validation set are 

Fig. 8. Flowchart of deep feature fusion strategy. (LP = Linear Projection; CE = Cross Entropy).  

Table 3 
Eight proposed networks.  

Index Inheritance Short Name Description 

N(1)  BN Base Network 
N(2) ←N(1)+

BAN+DO 
BDBN Add BAN and DO to N(1) 

N(3) ←N(2)-MP+RAP BDRBN Use RAP to replace MP in N 
(2) 

N(4) ←N(3)+MDA BDRMBN Add MDA to N(3) 
N(5) ←N(1)+DFF DBN Add DFF to N(1) 
N(6) ←N(2)+DFF DBDBN Add DFF to N(2) 
N(7) ←N(3)+DFF DBDRBN Add DFF to N(3) 
N(8) ←N(4)+DFF DBDRMBN 

(FGCNet*) 
Add DFF to N(4) 

(* Experiment below shows N(8) gives the best performance, and we name it as 
FGCNet). 

Algorithm 1 
Proposed deep feature fusion.  

Input: IIR Feature I from CNN models 
Algorithm of DFF 
Step 1: Create RAR features H(2) from pre-constructed two-layer GCN model 
Step 2: Dot product fusion combining IIR features and RAR features, y = H(2)I  

Step 3: Linear Projection, z = yW(2) + b  
Step 4: Softmax and cross-entropy (CE) loss  
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Algorithm 2 
Pseudocode of our algorithm.  

(continued on next page) 
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Ei(w) =

⎡

⎢
⎢
⎣

|Xv|

2
0

0
|Xv|

2

⎤

⎥
⎥
⎦, ∀w ∈ 1,⋯,W (53)  

where |X
v |

2 is because we have a balanced dataset. If the confusion matrix 
was run on the test set, then the diagonal elements turn to |Y|2 . In realistic 
situation, suppose we have a confusion matrix as 

Er(w) =
[

a1(w) a2(w)
a3(w) a4(w)

]

, ∀w ∈ 1,⋯,W (54)  

where the four variables {a1(w), a2(w), a3(w), a4(w)} represent TP, FN, 
FP, and TN at w-th run, respectively. Here P means COVID-19 and N 
means healthy lung. TP means a COVID-19 image is classified correctly 
as COVID-19, FN means a COVID-19 image is wrongly classified as 
healthy, FP means a healthy lung is wrongly classified as COVID-19, and 
TN means a healthy lung is classified correctly as healthy. It is obvious 
that 0 ≤ ak(w) ≤

|Xv |
2 , ∀w ∈ 1, ⋯, W ∧ ∀k ∈ [1, 2, 3, 4]if confusion matrix 

Algorithm 2 (continued ) 
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run on validation set. 
Four simple measures {ν1(w), ν2(w), ν3(w), ν4(w)} can be below, here 

ν1 means sensitivity, ν2 means specificity, ν3 precision, and ν4 accuracy. 

ν1(w) =
a1(w)

a1(w) + a2(w)
(55)  

ν2(w) =
a4(w)

a3(w) + a4(w)
(56)  

ν3(w) =
a1(w)

a1(w) + a3(w)
(57)  

ν4(w) =
a1(w) + a4(w)

a1(w) + a2(w) + a3(w) + a4(w)
(58) 

F1 score at w-th run is defined as ν5(w) 

ν5(w) =
2 × a1(w)

2 × a1(w) + a2(w) + a3(w)
(59) 

Besides, F1 score can be expressed in the format of sensitivity and 
precision as ν5(w) = 2× [ν3(w) × ν1(w)] ÷[ν3(w) + ν1(w)] . The F1 score 
ν5is the harmonic mean of the precision ν3 and sensitivity ν1. The range 
of F1 score is [0, 1]. The highest possible value 1 indicates perfect 
precision ν3 and sensitivity ν1, and the lowest possible value 0 means 
either the precision ν3 or the sensitivity is zero ν1. 

ν5 =

{
1 ν3 = 1 ∧ ν1 = 1
0 ν3 = 0 ∨ ν1 = 0 (60) 

Matthews correlation coefficient at w-th run (MCC) ν6(w) is defined 
as 

ν6(w) =
a4(w) × a1(w) − a3(w) × a2(w)

̅̅̅̅̅̅̅̅̅̅
ε(w)

√ (61)  

where ε(w) is a temporary variable defined as 
ε(w) = [a3(w) + a1(w)] × [a1(w) + a2(w)] × [a4(w) + a3(w)] × [a4(w) +

a2(w)]. 
Finally, Fowlkes–Mallows index (FMI) at w-th run ν7(w) can be 

defined as: 

ν7(w) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
a1(w)

a1(w) + a3(w)
×

a1(w)
a1(w) + a2(w)

√

(62) 

FMI can be expressed in the terms of sensitivity and precision as 
ν7(w) = sqrt[ν3(w) × ν1(w)]. 

After recording the seven indicators of all W runs, we can calculate 
the mean and standard deviation (MSD) of all m-th (∀m ∈ [1, 7]) mea-
sures as 

M(νm) =
1
W

×
∑W

w=1
νm(w) (63)  

SD(νm) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
W − 1

×
∑W

w=1
[νm(w) − M(νm)]

2

√
√
√
√ (64) 

The final result over W runs were reported in the form of Mean ± SD 
format. 

3.8. Proposed algorithm 

Algorithm 2 presents the pseudocode of our algorithm, composed of 
one input, one output, and five phases. Phase I presents the 

preprocessing. Phase II presents how to construct the eight network 
models. Phase III shows the detailed procedures of W runs over valida-
tion set. Phase IV presents how to select the best network model based 
on validation performance. Phase V shows to calculate the test perfor-
mance using the best network model. 

4. Experiments and results 

4.1. Hyperparameter setting 

Table 4 shows the hyperparameter setting in this study. Most of the 
values are set by trial-and-error method. The stability factor is set as 
10− 5. The retention probability is set as 0.5. The pooling size is set to 2. 
The rank threshold is set to 2. The number of DA techniques and new 
images per DA are set to 14 and 30, respectively. The maximum shift 
factor is 25, the mean and variance of noise injection is set to 0 and 0.01, 
respectively. The rotation parameter vector χR, horizontal shift param-
eter vector χH, Gamma correction parameter vector χG, scaling param-
eter vector χSare all listed here. Enhanced factor is calculated as 421. 
The number of conv layers and fully connected layers are set as 7 and 2, 
respectively. Number of cluster centroids is set to 256. Feature dimen-
sion in GCN is set as d0 = d2 = 120, and d1 = 60. The number of 
neighbors in KNN is set to 7. The number of runs Wis 10 since it is a 

Table 4 
Hyperparameter setting.  

Parameter Value 

αs 10− 5  

αrp 0.5 
n 2 
ag 2 
ηDA 14 
ηn 30 
aZ 25 
χR χR

1 = − 30∘,χR
2 = − 28∘,…,χR

15 = − 2∘, χR
16 = + 2∘,…,χR

ηn
= + 30∘.  

χN
m  0 

χN
v  0.01 

χH χH
1 = − 0.15,χH

2 = − 0.14,…,χH
15 = − 0.01,χH

16 = + 0.01,…,χH
ηn

= +

0.15.  
χG χG

1 = 0.4,χG
2 = 0.44,…,χG

15 = 0.96,χG
16 = 1.04,…,χG

ηn
= 1.6  

χS χS
1 = 0.7,χS

2 = 0.72,…,χS
15 = 0.98,χS

16 = 1.02,⋯,χS
ηn

= 1.3.  
ηEF 421 
uc 7 
uf 2 
|V| 256 
d0 120 
d1 60 
d2 120  

7 
W 10  

Table 5 
Training, validation, and test set.  

Set Symbol COVID C Healthy H 

Training Xt 160 160 
MDA Training XtD 67,360 67,360 
Validation Xv 64 64 
Test Y 96 96 
Total U5 = Xt∪Xv

∪Y  113 209  
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default value used in many other publications. 
Table 5 shows the training, MDA training, validation and test set. 

Where we can see the total size of training set is |Xt | = 320. The total size 
of enhanced MDA training set is |XtD| = 134, 720. The validation set’s 
and test set’s sizes are |Xv| = 128, and |Y| = 192, respectively. In total, 
the size of the whole dataset is |U5| = |Xt | + |Xv| + |Y| = 640. 

4.2. Base network configuration 

The top row of Fig. 9(a) shows the activation maps of the proposed 
base network N(1). Here, the size of input is S1 = 256 × 256 × 1, the 

output of the first conv layer (C1) is S2 = 256× 256× 32. Then after the 
first pooling (P1), the output is S3 = 128× 128× 32, We repeat the 
conv layers in total seven times, and the output is S15 = 2× 2× 512, 
S15 was flattened into one column vector S16 = 1× 1× 2048, and 
passed into two fully-connected blocks (first two block contains FCL and 
ReLU, last block contains FCL and softmax), and the outputs are S17 =

1× 1× 120, and S18 = 1× 1× 2. All the 18 matrices S(k), k ∈ [1, 18] 
correspond to the cuboids in Fig. 9(b). Note S17 will be used as IIR 
features. The hyperparameters of N(1) are presented in Table 6. Based 
on N(1), we can create the rest seven networks. 

4.3. Illustration of MDA 

Fig. 10 shows the MDA results. The original image is Fig. 2(a). We 
can observe that one image will generate 421 new images. This is why 
we called our algorithm multiple-way data augmentation (MDA). 

4.4. Comparison among proposed networks 

Table 7 gives the 10 runs of results using N(1) to N(4). N(1) is BN, N 
(2) is BDBN, N(3) is BDRBN, and N(4) is BDRMBN. Table 7 clearly shows 
that N(1) model yielded the following seven performances as: ν1

N1 =

89.22 ± 2.38, ν2
N1 = 92.50 ± 2.31, ν3

N1 = 92.31 ± 2.10, ν4
N1 =

90.86 ± 1.28, ν5
N1 = 90.70 ± 1.31, ν6

N1 = 81.82 ± 2.53, ν7
N1 =

90.73 ± 1.30. Definition of νcan be found in Section 3.7. 
For N(2), the performances improved as ν1

N2 = 94.22 ± 1.05, ν2
N2 =

94.69 ± 2.47, ν3
N2 = 94.71 ± 2.29, ν4

N2 = 94.45 ± 1.40, ν5
N2 =

94.45 ± 1.34, ν6
N2 = 88.93 ± 2.78, ν7

N2 = 94.46 ± 1.33. Comparing the 
results of BN as N(1), we can observe the effectiveness of using batch 
normalization and dropout. 

Furthermore, N(3) yields the performances as ν1
N3 = 94.53 ± 1.69, 

ν2
N3 = 95.47 ± 2.14, ν3

N3 = 95.47 ± 2.05, ν4
N3 = 95.00 ± 1.23, ν5

N3 =

94.98 ± 1.23, ν6
N3 = 90.04 ± 2.47, ν7

N3 = 94.99 ± 1.23. Comparing the 
seven indicator performances between BDBN of N(2) and BDRBN of N 

Fig. 9. Block chart of first three proposed networks.  

Table 6 
Hyperparameters of N(1).  

Index Layer Hyperparameter Size of activation map 

1 Input  256 × 256 × 1 
2 Conv-1 32 3 × 3 256 × 256 × 32 
3 P-1 /2 128 × 128 × 32 
4 Conv-2 64 3 × 3 128 × 128 × 64 
5 P-2 /2 64 × 64 × 64 
6 Conv-3 128 3 × 3 64 × 64 × 128 
7 P-3 /2 32 × 32 × 128 
8 Conv-4 128 3 × 3 32 × 32 × 128 
9 P-4 /2 16 × 16 × 128 
10 Conv-5 256 3 × 3 16 × 16 × 256 
11 P-5 /2 8 × 8 × 256 
12 Conv-6 256 3 × 3 8 × 8 × 256 
13 P-6 /2 4 × 4 × 256 
14 Conv-7 512 3 × 3 4 × 4 × 512 
15 P-7 /2 2 × 2 × 512 
16 Flatten  1 × 1 × 2048 
17 FCL-1 120 × 2048 

120 × 1 
1 × 1 × 120 

18 FCL-2 2 × 120 
2 × 1 

1 × 1 × 2  
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Fig. 10. Results of proposed MDA.  
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Table 7 
Comparison among N(1–4) over validation set.  

N(1) ν1 ν2 ν3 ν4 ν5 ν6 ν7 

1 89.06 93.75 93.44 91.41 91.20 82.90 91.23 
2 93.75 92.19 92.31 92.97 93.02 85.95 93.03 
3 90.63 87.50 87.88 89.06 89.23 78.16 89.24 
4 89.06 92.19 91.94 90.63 90.48 81.29 90.49 
5 89.06 92.19 91.94 90.63 90.48 81.29 90.49 
6 90.63 92.19 92.06 91.41 91.34 82.82 91.34 
7 89.06 93.75 93.44 91.41 91.20 82.90 91.23 
8 89.06 95.31 95.00 92.19 91.94 84.54 91.98 
9 87.50 90.63 90.32 89.06 88.89 78.16 88.90 
10 84.38 95.31 94.74 89.84 89.26 80.17 89.41 
MSD 89.22±2.38 92.50±2.31 92.31±2.10 90.86±1.28 90.70±1.31 81.82±2.53 90.73±1.30 
N(2) ν1 ν2 ν3 ν4 ν5 ν6 ν7 

1 93.75 95.31 95.24 94.53 94.49 89.07 94.49 
2 95.31 96.88 96.83 96.09 96.06 92.20 96.07 
3 93.75 95.31 95.24 94.53 94.49 89.07 94.49 
4 95.31 93.75 93.85 94.53 94.57 89.07 94.58 
5 95.31 96.88 96.83 96.09 96.06 92.20 96.07 
6 95.31 95.31 95.31 95.31 95.31 90.63 95.31 
7 93.75 92.19 92.31 92.97 93.02 85.95 93.03 
8 92.19 96.88 96.72 94.53 94.40 89.16 94.43 
9 93.75 89.06 89.55 91.41 91.60 82.90 91.63 
10 93.75 95.31 95.24 94.53 94.49 89.07 94.49 
MSD 94.22±1.05 94.69±2.47 94.71±2.29 94.45±1.40 94.45±1.34 88.93±2.78 94.46±1.33 
N(3) ν1 ν2 ν3 ν4 ν5 ν6 ν7 

1 96.88 92.19 92.54 94.53 94.66 89.16 94.68 
2 95.31 93.75 93.85 94.53 94.57 89.07 94.58 
3 93.75 93.75 93.75 93.75 93.75 87.50 93.75 
4 93.75 95.31 95.24 94.53 94.49 89.07 94.49 
5 93.75 98.44 98.36 96.09 96.00 92.29 96.03 
6 95.31 98.44 98.39 96.88 96.83 93.80 96.84 
7 96.88 95.31 95.38 96.09 96.12 92.20 96.13 
8 92.19 96.88 96.72 94.53 94.40 89.16 94.43 
9 95.31 96.88 96.83 96.09 96.06 92.20 96.07 
10 92.19 93.75 93.65 92.97 92.91 85.95 92.92 
MSD 94.53±1.69 95.47±2.14 95.47±2.05 95.00±1.23 94.98±1.23 90.04±2.47 94.99±1.23 
N(4) ν1 ν2 ν3 ν4 ν5 ν6 ν7 

1 96.88 98.44 98.41 97.66 97.64 95.32 97.64 
2 96.88 96.88 96.88 96.88 96.88 93.75 96.88 
3 96.88 96.88 96.88 96.88 96.88 93.75 96.88 
4 98.44 98.44 98.44 98.44 98.44 96.88 98.44 
5 93.75 98.44 98.36 96.09 96.00 92.29 96.03 
6 96.88 96.88 96.88 96.88 96.88 93.75 96.88 
7 95.31 98.44 98.39 96.88 96.83 93.80 96.84 
8 95.31 95.31 95.31 95.31 95.31 90.63 95.31 
9 95.31 93.75 93.85 94.53 94.57 89.07 94.58 
10 96.88 96.88 96.88 96.88 96.88 93.75 96.88 
MSD 96.25±1.32 97.03±1.55 97.03±1.52 96.64±1.11 96.63±1.10 93.30±2.21 96.63±1.10  

Fig. 11. Grad-CAM result on a covid-19 case.  
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Table 8 
Comparison among N(5–8) over validation set.  

N(5) ν1 ν2 ν3 ν4 ν5 ν6 ν7 

1 96.88 90.63 91.18 93.75 93.94 87.67 93.98 
2 90.63 93.75 93.55 92.19 92.06 84.42 92.08 
3 93.75 92.19 92.31 92.97 93.02 85.95 93.03 
4 95.31 89.06 89.71 92.19 92.42 84.54 92.47 
5 95.31 90.63 91.04 92.97 93.13 86.03 93.15 
6 90.63 90.63 90.63 90.63 90.63 81.25 90.63 
7 92.19 92.19 92.19 92.19 92.19 84.38 92.19 
8 95.31 89.06 89.71 92.19 92.42 84.54 92.47 
9 89.06 93.75 93.44 91.41 91.20 82.90 91.23 
10 95.31 90.63 91.04 92.97 93.13 86.03 93.15 
MSD 93.44±2.64 91.25±1.68 91.48±1.37 92.34±0.89 92.41±0.98 84.77±1.80 92.44±0.98 
N(6) ν1 ν2 ν3 ν4 ν5 ν6 ν7 

1 96.88 96.88 96.88 96.88 96.88 93.75 96.88 
2 92.19 96.88 96.72 94.53 94.40 89.16 94.43 
3 95.31 95.31 95.31 95.31 95.31 90.63 95.31 
4 98.44 93.75 94.03 96.09 96.18 92.29 96.21 
5 98.44 93.75 94.03 96.09 96.18 92.29 96.21 
6 95.31 95.31 95.31 95.31 95.31 90.63 95.31 
7 95.31 95.31 95.31 95.31 95.31 90.63 95.31 
8 93.75 95.31 95.24 94.53 94.49 89.07 94.49 
9 93.75 95.31 95.24 94.53 94.49 89.07 94.49 
10 95.31 93.75 93.85 94.53 94.57 89.07 94.58 
MSD 95.47±2.01 95.16±1.15 95.19±1.04 95.31±0.82 95.31±0.86 90.66±1.66 95.32±0.86 
N(7) ν1 ν2 ν3 ν4 ν5 ν6 ν7 

1 95.31 95.31 95.31 95.31 95.31 90.63 95.31 
2 93.75 96.88 96.77 95.31 95.24 90.67 95.25 
3 96.88 93.75 93.94 95.31 95.38 90.67 95.40 
4 96.88 95.31 95.38 96.09 96.12 92.20 96.13 
5 95.31 95.31 95.31 95.31 95.31 90.63 95.31 
6 95.31 95.31 95.31 95.31 95.31 90.63 95.31 
7 95.31 95.31 95.31 95.31 95.31 90.63 95.31 
8 98.44 95.31 95.45 96.88 96.92 93.80 96.93 
9 96.88 95.31 95.38 96.09 96.12 92.20 96.13 
10 96.88 95.31 95.38 96.09 96.12 92.20 96.13 
MSD 96.09±1.33 95.31±0.74 95.36±0.67 95.70±0.55 95.72±0.57 91.42±1.11 95.72±0.57 
N(8) ν1 ν2 ν3 ν4 ν5 ν6 ν7 

1 98.44 98.44 98.44 98.44 98.44 96.88 98.44 
2 98.44 96.88 96.92 97.66 97.67 95.32 97.68 
3 96.88 98.44 98.41 97.66 97.64 95.32 97.64 
4 96.88 95.31 95.38 96.09 96.12 92.20 96.13 
5 96.88 96.88 96.88 96.88 96.88 93.75 96.88 
6 100.00 98.44 98.46 99.22 99.22 98.45 99.23 
7 96.88 96.88 96.88 96.88 96.88 93.75 96.88 
8 100.00 90.63 91.43 95.31 95.52 91.03 95.62 
9 95.31 98.44 98.39 96.88 96.83 93.80 96.84 
10 96.88 98.44 98.41 97.66 97.64 95.32 97.64 
MSD 97.66±1.52 96.88±2.44 96.96±2.21 97.27±1.12 97.28±1.08 94.58±2.17 97.30±1.06  

Fig. 12. Grad-CAM result on a normal case.  
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(3), we can conclude that rank-based average pooling gives significant 
better performance than using max pooling in N(2). 

Finally, checking N(4) in Table 7 obtained the performance as ν1
N4 =

96.25 ± 1.32, ν2
N4 = 97.03 ± 1.55, ν3

N4 = 97.03 ± 1.52, ν4
N4 =

96.64 ± 1.11, ν5
N4 = 96.63 ± 1.10, ν6

N4 = 93.30 ± 2.21, ν7
N4 =

96.63 ± 1.10. The increase of performances of BDRMBN of N(4) 
compared to BDRBN of N(3) indicate that multiple-way data augmen-
tation can help improving the performance of the AI classifier. 

4.5. Visual explanation 

We used Gradient-weighted Class Activation Mapping (Grad-CAM) 
[49] to visually show why our model, BDRMBN of N(4), can make the 
decision. Grad-CAM uses the gradient of the classification score with 
respect to the convolutional features determined by the network in order 
to understand which parts of the image are most important for classifi-
cation. The “jet” pseudo-color was used in the heat map. Hence, red 
colors mean important areas for AI diagnosis, and blue colors mean 
unimportant areas for AI diagnosis. 

Fig. 11 shows the Grad-CAM heat map results of a COVID-19 CCT 

Fig. 13. Error bar of proposed eight models.  

Table 10 
Performance of proposed N(8) FGCNet on test set.  

Run ν1 ν2 ν3 ν4 ν5 ν6 ν7 

1 98.96 96.88 96.94 97.92 97.94 95.85 97.94 
2 96.88 96.88 96.88 96.88 96.88 93.75 96.88 
3 96.88 98.96 98.94 97.92 97.89 95.85 97.90 
4 96.88 95.83 95.88 96.35 96.37 92.71 96.37 
5 96.88 95.83 95.88 96.35 96.37 92.71 96.37 
6 97.92 95.83 95.92 96.88 96.91 93.77 96.91 
7 95.83 95.83 95.83 95.83 95.83 91.67 95.83 
8 100.00 97.92 97.96 98.96 98.97 97.94 98.97 
9 96.88 93.75 93.94 95.31 95.38 90.67 95.40 
10 100.00 97.92 97.96 98.96 98.97 97.94 98.97 
MSD 97.71±1.46 96.56±1.48 96.61±1.43 97.14±1.26 97.15±1.25 94.29±2.52 97.16±1.25  

Table 9 
Comparison of eight network models.  

Model ν1 ν2 ν3 ν4 ν5 ν6 ν7 

N(1) 89.22±2.38 92.50±2.31 92.31±2.10 90.86±1.28 90.70±1.31 81.82±2.53 90.73±1.30 
N(2) 94.22±1.05 94.69±2.47 94.71±2.29 94.45±1.40 94.45±1.34 88.93±2.78 94.46±1.33 
N(3) 94.53±1.69 95.47±2.14 95.47±2.05 95.00±1.23 94.98±1.23 90.04±2.47 94.99±1.23 
N(4) 96.25±1.32 97.03±1.55 97.03±1.52 96.64±1.11 96.63±1.10 93.30±2.21 96.63±1.10 
N(5) 93.44±2.64 91.25±1.68 91.48±1.37 92.34±0.89 92.41±0.98 84.77±1.80 92.44±0.98 
N(6) 95.47±2.01 95.16±1.15 95.19±1.04 95.31±0.82 95.31±0.86 90.66±1.66 95.32±0.86 
N(7) 96.09±1.33 95.31±0.74 95.36±0.67 95.70±0.55 95.72±0.57 91.42±1.11 95.72±0.57 
N(8) 97.66±1.52 96.88±2.44 96.96±2.21 97.27±1.12 97.28±1.08 94.58±2.17 97.30±1.06  

S.-H. Wang et al.                                                                                                                                                                                                                               



Information Fusion 67 (2021) 208–229

225

slice. On the left part of Fig. 11(a), the red circle delineated the lesions, 
where we can see the GGO occurs. Fig. 11(b) show the corresponding 
heat map. We can see here AI pay the most attention on the GGO lesion 
(See the red circle on the Fig. 11a), indicating AI successfully capture the 
GGO lesions. Secondly, AI pay somewhat attention on the tracheae (in 
the middle of the Fig. 11b). The reason may be COVID-19 influences the 
grayscale values of tracheae tissues, where we can see yellow blots on 
the middle areas in Fig. 11(b). 

Fig. 12 shows the Grad-CAM heat map of a normal CCT slice. Our AI 
model scans through the whole image and does not find any strong ac-
tivations (suspicious areas). Hence, the AI model judges this image 
“healthy”. 

4.6. Effect of deep feature fusion 

We compared the performance of using deep feature fusion against 
not using deep feature fusion. The comparison was done on the vali-
dation set. The results using N(5–8) are presented in Table 8. Comparing 
Tables 7 and 8, we can find that using DFF can increase the classification 
performance. 

For clear view, the results using all the proposed eight models are 
presented in Table 9. N(1–4) did not use DFF while N(5–8) added DFF to 
the corresponding networks (See Table 3). Fig. 13 shows the mean and 
standard deviation of the eight neural network models. 

Comparing BDRMBN of N(4) against DBDRMBN of N(8), we can see 
that adding DFF can improve all the five indicators (ν1, ν4, ν5, ν6, ν7) 
except (ν2, ν3). This indicates the DFF is effective in increasing the 
classifier’s performance. 

The same scenario can be observed by comparing BN of N(1) against 

DBN of N(5), comparing BDBN of N(2) DBDBN of N(6), and comparing 
BDRBN of N(3) and DBDRBN of N(7). The reason why DFF can improve 
the performance is because DFF fuses features from GCN, which learns 
the relation-awareness relationships (RARs) among the validation im-
ages. Hence, classifiers with DFFs were more accurate than those 
without DFFs. 

Besides, from Table 9 and Fig. 13, we can find the optimal n* = 8. 
That means, N(8) achieved the best performance among all our proposed 
eight network models. This falls within our expectation, because 
DBDRMBN of N(8) fuses RAR features from GCN with features from 
BDRMBN of N(4). This feature fusion helps our classifier obtained the 
best performance. As designed in Section 3.6, the best model among all 
eight proposed networks is dubbed as FGCNet, indicating the fusion of 
GCN and CNN networks. 

4.7. Comparison to state-of-the-art approaches 

Above performances ran on the validation set. Now we run the best 
model FGCNet, i.e., DBDRMBN model on the test set, and report its 
performance. The results are shown in Table 10. As is shown, ν1

N8 =

97.71 ± 1.46, ν2
N8 = 96.56 ± 1.48, ν3

N8 = 96.61 ± 1.43, ν4
N8 =

97.14 ± 1.26, ν5
N8 = 97.15 ± 1.25, ν6

N8 = 94.29 ± 2.52, ν7
N8 =

97.16 ± 1.25. Comparing Tables 9and 10, we observe that the perfor-
mances on validation set and test set are quite similar, only the test 
performance is slightly less than the validation performance. 

We compared our DBDRMBN method, i.e., N(8) model, with 15 state- 
of-the-art approaches: RBFNN [4], KELM [5], ELM-BA [6], RCBBO [7], 
6L-CLF [8], GoogLeNet [9], ResNet-18 [10], RN-50-AD [11], SMO [12], 
CSSNet [13], GGNet [14], COVNet [15], NiNet [16], FCONet [17], and 

Table 11 
Comparison with state-of-the-art approaches.  

Approach ν1 ν2 ν3 ν4 ν5 ν6 ν7 

RBFNN [4] 67.08 74.48 72.52 70.78 69.64 41.74 69.64 
KELM [5] 57.29 61.46 59.83 59.38 58.46 18.81 58.46 
ELM-BA [6] 57.08 

±3.86 
72.40 
±3.03 

67.48 
±1.65 

64.74 
±1.26 

61.75 
±2.24 

29.90 
±2.45 

61.76 
±2.24 

RCBBO [7] 69.48 
±4.47 

81.15 
±3.16 

78.79 
±1.80 

75.31 
±0.82 

73.72 
±1.86 

51.10 
±1.28 

73.93 
±1.66 

6L-CLF [8] 81.04 
± 2.90 

79.27 
± 2.21 

79.70 
± 1.27 

80.16 
± 0.85 

80.31 
± 1.13 

60.42 
± 1.73 

80.35 
± 1.15 

GoogLeNet [9] 76.88 
± 3.92 

83.96 
± 2.29 

82.84 
± 1.58 

80.42 
± 1.40 

79.65 
± 1.92 

61.10 
± 2.62 

79.65 
± 1.91 

ResNet-18 [10] 78.96 
± 2.90 

89.48 
± 1.64 

88.30 
± 1.50 

84.22 
± 1.23 

83.31 
± 1.53 

68.89 
± 2.33 

83.32 
± 1.53 

RN-50-AD [11] 83.96 
±3.19 

90.31 
±2.14 

89.73 
±1.78 

87.14 
±1.07 

86.69 
±1.34 

74.50 
±2.00 

86.77 
±1.27 

SMO [12] 93.23 
±1.72 

95.52 
±1.30 

95.44 
±1.22 

94.38 
±0.64 

94.31 
±0.68 

88.80 
±1.27 

93.23 
±1.72 

CSSNet [13] 92.08 
±1.01 

93.33 
±2.61 

93.32 
±2.40 

92.71 
±0.95 

92.67 
±0.85 

85.47 
±1.93 

92.69 
±0.86 

GGNet [14] 94.38 
±2.09 

90.63 
±2.02 

91.00 
±1.77 

92.50 
±1.16 

92.64 
±1.14 

85.11±
2.34 

92.66 
±1.15 

COVNet [15] 90.83 
±2.45 

96.67 
±0.82 

96.47 
±0.82 

93.75 
±1.13 

93.55 
±1.24 

87.68 
±2.14 

93.60 
±1.21 

NiNet [16] 95.31 
±1.13 

77.19 
±2.62 

80.73 
±1.70 

86.25 
±1.02 

87.40 
±0.79 

73.76 
±1.73 

87.71 
±0.73 

FCONet [17] 93.54 
±1.69 

96.04 
±1.46 

95.96 
±1.38 

94.79 
±0.92 

94.72 
±0.94 

89.64 
±1.83 

94.74 
±0.94 

DeCovNet [18] 90.00 
±1.49 

90.52 
±1.99 

90.52 
±1.72 

90.26 
±0.65 

90.24 
±0.61 

80.56 
±1.32 

90.25 
±0.61 

FGCNet 
(Ours) 

97.71 
±1.46 

96.56 
±1.48 

96.61 
±1.43 

97.14 
±1.26 

97.15 
±1.25 

94.29 
±2.52 

97.16 
±1.25  
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DeCovNet [18]. All the methods were compared on the test set of our 
640-image dataset. Some methods were not proposed for detecting 
COVID-19, some methods work on Chest X-ray images, and some are for 
multi-class classification, nevertheless, we modified and transferred 
their methods to our CCT images. The comparison and its plot are pre-
sented in Table 11 and Fig. 14. The results in Table 11 and Fig. 14 show 
that the proposed FGCNet (DBDRMBN) achieved the best results among 
all algorithms. 

5. Conclusions 

This paper proposed a total eight network models for COVID-19 
detection in CCTs. Our experiments showed our DBDRMBN of N(8) 

can achieve the best performance among all the eight proposed models. 
This model is also named as FGCNet for short, and it obtains superior 
results to other 15 state-of-the-art approaches. 

The reason why our FGCNet has the best performance is (i) because 
the FGCNet (DBDRMBN) is a deep feature fusion combination of an 
improved CNN model N(4) of BDRMBN and a GCN model. Here, N(4) 
(BDRMBN) helps to extract learnt individual image-level representa-
tions, while GCN helps to extract learnt relation-aware representation. 
Finally, the DFF strategy help fuse those two types of features. (ii) The 
proposed N(4) (BDRMBN) is a novel neural network trained with its 
structure developed and weights trained from scratch. Besides, 
BDRMBN used several advanced techniques, such as batch normaliza-
tion, dropout, rank-based average pooling, and multiple-way data 
augmentation. 

The shortcomings of this proposed FGCNet can only handles CCT 
images. For chest X-ray images and other sources of data, the FGCNet 
may not work correctly. So, it is necessary to define a network that can 
fuse different sources/modalities of data and give an overall decision. 
Another shortcoming is this proposed FGCNet is not verified by a strict 
clinical test. 

The future work directions are: (i) Expand the dataset and test our 
algorithm on different sources of COVID-19, such as the combination of 
X-ray and CT. (ii) Test other fuse strategies of CNN and GCN. (iii) Try to 
employ deeper GCN, and test whether deeper GCN will help improve the 
performance. 
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Table 12. 

Fig. 14. Comparison plot.  
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Appendix B 

Table 13 

Table 12 
Abbreviation list.  

Abbreviation Full name 

CCT chest computed tomography 
GGO ground-glass opacity 
CAP community acquired pneumonia 
HS hyperspectral 
CNN convolutional neural network 
GCN graph convolutional network 
IIR individual image-level representation 
RAR relation-aware representation 
MV majority voting 
NLAF non-linear activation function 
ICS internal covariant shift 
BAN Batch Normalization 
DO Dropout 
L2P l2 pooling 
MDA Multiple-way data augmentation 
SSD small-size dataset 
LG lack of generation 
KMC k-means clustering 
kNN k-nearest neighbors 
BN Base Network 
FGCNet Fusion of GCN and CNN Network  

Table 13 
Symbol list.  

Symbol Meaning 

L Labeling from each individual expert 
L̂  Final labeling 

U Dataset 
U1 Raw dataset 
U5 Preprocessed dataset 
|U| Number of samples in the dataset 
Xt Training set 
Xv Validation Set 
Y Test set 
μmin Min grayscale value 
μmax Max grayscale value 
W Width 
H Height 
C Channel 
αs Stability factor 
αrp Retention probability 
μe Empirical mean 
ϕe Empirical variance 
μp Population mean 
ϕp Population variance 
Ψ Region to be pooled 
n Pooling size. 
P Pooling output 
ag Rank threshold 
χ Various data augmentation factor 
ηDA Number of MDA techniques 
ηn Number of new images generated for each DA 
aZ Maximum shift factor  

Mirror function 
ηEF Enhance factor  

Concatenation 
uc Number of conv layers 
uf Number of FCL layers 
|V| Cluster centroids  

Number of neighbors in kNN 
W Number of runs 
w Run index  
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Appendix C 

Fig. 4 shows a simplistic CNN example with four FCL layers. Suppose we have C(k),k = 1,2,3,4neurons at k-th layer, and assume C(1) = 6, C(2) =

10, C(3) = 6, C(4) = 4. Thus, we have in total 
∑4

k=1N(k) = 26nodes. Suppose we do not consider incoming and outgoing weights, and do not consider 
the number of biases, the size of learnable weights C(i, j), where (i, j) = {(1,2), (2,3), (3,4)}as number of weights between layer i and layer j before 
dropout, roughly calculating, can be written as C(1,2) = 6× 10 = 60, C(2,3) = 10× 6 = 60, C(3,4) = 6× 4 = 24. In total, we have the total number 
of learnable weights before dropout as C =

∑
i,jC(i, j) = 144. 

Using αrp = 0.5, the size of learnable weights after dropout between layer iand layer j is symbolized as CD(i, j), and we can calculate the total 

number of learnable weights as C
D =

∑

i,j
C′

(i, j) = 15 + 15 + 6 = 36 . The compression ratio of learnable weights (CRLW), roughly, can be calculated 

by CD/C = 36/44 = 0.25, 

Appendix D 

Using Fig. 5 as a simplistic example, and assuming the region Ψ(1, 1) at 1st row 1st column of the input is chosen. For the sake of format, we use its 

row-vector Ψ(1,1)←Ψ(1,1)
̅̅̅̅ →

to represent in this paragraph, so we have Φ(1,1) = (2.5,5,1.6,1.1). We can calculate the results of L2P as PL2P(Ψ(1,1)) =

sqrt((2.52 + 52 + 1.62 + 1.12)/4) =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
35.02/4

√
=

̅̅̅̅̅̅̅̅̅̅̅̅̅
8.755

√
= 2.96. The pooling result of AP is PAP(Ψ(1,1)) = average(Ψ(1,1)) = (2.5 + 5 + 1.6 +

1.1) ÷ 4 = 2.55. The MP result is PMP(Ψ(1,1)) = max(Ψ(1,1)) = max(2.5,5,1.6,1.1) = 5. The rank matrix of Ψ(1, 1) also expressed in row-vector 
format RΨ(1, 1) ← vec(RΨ(1, 1)), we have RΨ(1,1) = (2,1,3,4). The RAP result is PRAP(Ψ(1,1)) = (2.5 + 5) ÷ 2 = 3.75. 
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